This commit is contained in:
Janggun Lee
2024-07-30 15:26:33 +09:00
parent d34f586e4d
commit af889722bc
64 changed files with 452 additions and 384 deletions

View File

@@ -19,5 +19,5 @@ module BinarySearch
=
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
0 (* TODO *)
end

View File

@@ -2,11 +2,11 @@
Given an array `a` of integers with length `n` greater than `0`,
return `max_idx`, the index of the maximum element of that array.
E.g. `max_idx [5, 12, 34, 10] 4` will return `2`
E.g. `max_idx [4, 3, 2] 3` will return `0`
E.g. `max_idx [1, 2, 3, 4] 4` will return `3`
Prove the below program indeed follows the given specification,
by giving an appropriate invariant.
*)
@@ -22,12 +22,13 @@ module Max
requires { n = length a }
ensures { 0 <= max_idx <= n-1 }
ensures { forall i. 0 <= i <= n-1 -> a[i] <= a[max_idx] }
=
=
let ref max_idx = 0 in
for i = 0 to n-1 do
invariant { 0 <= max_idx <= n-1 }
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line number 30. DON'T add another line of codes. *) }
(* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line 31. DON'T add more code above or below. *)
invariant { true }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
if a[max_idx] < a[i] then max_idx <- i;
done;

View File

@@ -17,9 +17,9 @@ module Pascal
ensures { result >= 1 }
= if k = 0 || k = n then 1 else comb (n-1) k + comb (n-1) (k-1)
(* Computes the Pascal's triangle and returns the `n`th row of it. *)
(* Computes Pascal's triangle and returns the `n`th row of it. *)
(* Insert an appropriate invariant so that Why3 can verify this function. *)
(* You SHOULD understand the Pascal's triangle first to find good invariants. *)
(* You should understand Pascal's triangle first to find good invariants. *)
let chooses (n : int) : array int
requires { n > 0 }
ensures { forall i: int.
@@ -28,16 +28,17 @@ module Pascal
let ref row = Array.make 1 1 in
for r = 1 to n do
invariant { length row = r }
invariant { forall c: int. 0 <= c < r -> row[c] = comb (r-1) c }
invariant { forall c: int. 0 <= c < r -> row[c] = comb (r-1) c }
let new_row = Array.make (r+1) 1 in
for c = 1 to r-1 do
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line number 35. DON'T add another lines. *) }
(* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line 36. DON'T add more code above or below. *)
invariant { true }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
new_row[c] <- row[c-1] + row[c]
done;
row <- new_row
done;
row
end