assignment 1~5: fixes

- assignment05/pascal.mlw: lowered the difficulty (one more invariant given)
- assignment02, 03: minor fixes & divide into sub-problems
This commit is contained in:
AnHaechan
2023-08-21 07:13:27 +00:00
parent 24dc47a7cf
commit d28bca2b18
27 changed files with 863 additions and 938 deletions

View File

@@ -19,4 +19,4 @@ module BinarySearch
=
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
0 (* TODO *)
end
end

View File

@@ -4,7 +4,6 @@
return the maximum element of the array.
You should stengthen the loop invariant.
*)
module Max
@@ -20,8 +19,9 @@ module Max
ensures { exists i. 0 <= i < n -> a[i] = max }
= let ref max = 0 in
for i = 0 to n - 1 do
(* IMPORTANT: MODIFY ONLY THIS INVARIANT, OR YOU'LL GET ZERO POINTS *)
invariant { true (*TODO*) }
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
if max < a[i] then max <- a[i];
done;
max

View File

@@ -1,10 +1,14 @@
(* Pascal
Prove that the Pascal's triangle indeed computes combinations.
HINT: https://en.wikipedia.org/wiki/Pascal%27s_triangle
*)
module Pascal
use int.Int
use ref.Ref
use array.Array
(* HINT: https://en.wikipedia.org/wiki/Pascal%27s_triangle *)
(* You should understand the Pascal's triangle first to find good invariants *)
let rec function comb (n k: int) : int
requires { 0 <= k <= n }
variant { n }
@@ -12,6 +16,7 @@ module Pascal
= if k = 0 || k = n then 1 else comb (n-1) k + comb (n-1) (k-1)
(* Insert appropriate invariants so that Why3 can verify this function. *)
(* You SHOULD understand the Pascal's triangle first to find good invariants. *)
let chooses (n : int) : array int
requires { n > 0 }
ensures { forall i: int.
@@ -20,10 +25,12 @@ module Pascal
let ref row = Array.make 1 1 in
for r = 1 to n do
invariant { length row = r }
invariant { true (*TODO*) }
invariant { forall c: int. 0 <= c < r -> row[c] = comb (r-1) c }
let new_row = Array.make (r+1) 1 in
for c = 1 to r-1 do
invariant { true (*TODO*) }
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
new_row[c] <- row[c-1] + row[c]
done;
row <- new_row

View File

@@ -11,7 +11,6 @@ module Division
use int.Int
(* IMPORTANT: DON'T MODIFY LINES EXCEPT `TODO`s OR YOU WILL GET ZERO POINTS *)
let division (a b: int) : int
requires { a >= 0 }
requires { b > 0 }
@@ -20,7 +19,7 @@ module Division
let ref q = 0 in
let ref r = a in
while r >= b do
invariant { true (*TODO*) }
invariant { true (* TODO: Replace `true` with your solution *) }
variant { r }
q <- q + 1;
r <- r - b

View File

@@ -39,10 +39,8 @@ module FactLoop
= let ref m = 0 in
let ref r = 1 in
while m < n do
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO *) }
variant { n (* TODO *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
invariant { true (* TODO: Replace `true` with your solution *) }
variant { n (* TODO: Replace `n` with your solution *) }
m <- m + 1;
r <- r * m
done;

View File

@@ -31,13 +31,11 @@ module TwoWaySort
let ref j = length a - 1 in
while i < j do
invariant { 0 <= i /\ j < length a }
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { forall i1: int. 0 <= i1 < i
-> true (* TODO *) }
-> true (* TODO: Replace `true` with your solution *) }
invariant { forall i2: int. j < i2 < length a
-> true (* TODO *) }
invariant { true (* TODO *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
-> true (* TODO: Replace `true` with your solution *) }
invariant { true (* TODO: Replace `true` with your solution *) }
variant { j - i }
if not a[i] then
incr i

View File

@@ -0,0 +1,30 @@
(* Euclidean division
1. Prove correctness of euclideian divison:
`division a b` returns an integer `q` such that
`a = bq+r` and `0 <= r < b` for some `r`.
- You have to strengthen the precondition.
- You have to strengthen the loop invariant.
*)
module Division
use int.Int
let division (a b: int) : int
requires { a >= 0 }
requires { b > 0 }
ensures { exists r: int. a = b * result + r /\ 0 <= r < b }
=
let ref q = 0 in
let ref r = a in
while r >= b do
invariant { a = b * q + r /\ 0 <= r }
variant { r }
q <- q + 1;
r <- r - b
done;
q
end

View File

@@ -0,0 +1,37 @@
(* Two programs to compute the factorial
*)
module FactRecursive
use int.Int
use int.Fact
let rec fact_rec (n: int) : int
requires { n >= 0 }
ensures { result = fact n }
variant { n }
=
if n = 0 then 1 else n * fact_rec (n - 1)
end
module FactLoop
use int.Int
use int.Fact
let fact_loop (n: int) : int
requires { 0 < n }
ensures { result = fact n }
= let ref m = 0 in
let ref r = 1 in
while m < n do
invariant { 0 <= m <= n /\ r = fact m }
variant { n - m }
m <- m + 1;
r <- r * m
done;
r
end

View File

@@ -0,0 +1,49 @@
(* Two Way Sort
The following program sorts an array of Boolean values, with False<True.
E.g.
two_way_sorted [True; False; False; True; False]
= [False; False; False; True; True]
- Strengthen the invariant to prove correctness.
*)
module TwoWaySort
use int.Int
use bool.Bool
use ref.Refint
use array.Array
use array.ArraySwap
use array.ArrayPermut
predicate (<<) (x y: bool) = x = False \/ y = True
predicate sorted (a: array bool) =
forall i1 i2: int. 0 <= i1 <= i2 < a.length -> a[i1] << a[i2]
let two_way_sort (a: array bool) : unit
ensures { sorted a }
ensures { permut_all (old a) a }
=
let ref i = 0 in
let ref j = length a - 1 in
while i < j do
invariant { 0 <= i /\ j < length a }
invariant { forall i1: int. 0 <= i1 < i -> a[i1] = False }
invariant { forall i2: int. j < i2 < length a -> a[i2] = True }
invariant { permut_all (old a) a }
variant { j - i }
if not a[i] then
incr i
else if a[j] then
decr j
else begin
swap a i j;
incr i;
decr j
end
done
end