assignment 1~5: fixes

- assignment05/pascal.mlw: lowered the difficulty (one more invariant given)
- assignment02, 03: minor fixes & divide into sub-problems
This commit is contained in:
AnHaechan
2023-08-21 07:13:27 +00:00
parent 24dc47a7cf
commit d28bca2b18
27 changed files with 863 additions and 938 deletions

View File

@@ -0,0 +1,22 @@
(* Binary search
A classical example. Searches a sorted array for a given value v.
Consult <https://gitlab.inria.fr/why3/why3/-/blob/master/examples/binary_search.mlw>.
*)
module BinarySearch
use int.Int
use int.ComputerDivision
use ref.Ref
use array.Array
let binary_search (a : array int) (v : int) : int
requires { forall i1 i2 : int. 0 <= i1 < i2 < length a -> a[i1] <= a[i2] }
ensures { 0 <= result <= length a }
ensures { forall i: int. 0 <= i < result -> a[i] < v }
ensures { forall i: int. result <= i < length a -> v <= a[i] }
=
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
0 (* TODO *)
end

View File

@@ -0,0 +1,29 @@
(* Max
Given an array `a` of natural numbers with length `n`,
return the maximum element of the array.
You should stengthen the loop invariant.
*)
module Max
use int.Int
use ref.Ref
use array.Array
let max (a: array int) (n: int) : (max: int)
requires { n = length a }
requires { forall i. 0 <= i < n -> a[i] >= 0 }
ensures { forall i. 0 <= i < n -> a[i] <= max }
ensures { exists i. 0 <= i < n -> a[i] = max }
= let ref max = 0 in
for i = 0 to n - 1 do
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
if max < a[i] then max <- a[i];
done;
max
end

View File

@@ -0,0 +1,39 @@
(* Pascal
Prove that the Pascal's triangle indeed computes combinations.
HINT: https://en.wikipedia.org/wiki/Pascal%27s_triangle
*)
module Pascal
use int.Int
use ref.Ref
use array.Array
let rec function comb (n k: int) : int
requires { 0 <= k <= n }
variant { n }
ensures { result >= 1 }
= if k = 0 || k = n then 1 else comb (n-1) k + comb (n-1) (k-1)
(* Insert appropriate invariants so that Why3 can verify this function. *)
(* You SHOULD understand the Pascal's triangle first to find good invariants. *)
let chooses (n : int) : array int
requires { n > 0 }
ensures { forall i: int.
0 <= i < length result -> result[i] = comb n i }
=
let ref row = Array.make 1 1 in
for r = 1 to n do
invariant { length row = r }
invariant { forall c: int. 0 <= c < r -> row[c] = comb (r-1) c }
let new_row = Array.make (r+1) 1 in
for c = 1 to r-1 do
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
invariant { true (* TODO: Replace `true` with your solution *) }
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
new_row[c] <- row[c-1] + row[c]
done;
row <- new_row
done;
row
end