assignment 1~5: fixes

- assignment05/pascal.mlw: lowered the difficulty (one more invariant given)
- assignment02, 03: minor fixes & divide into sub-problems
This commit is contained in:
AnHaechan
2023-08-21 07:13:27 +00:00
parent 24dc47a7cf
commit d28bca2b18
27 changed files with 863 additions and 938 deletions

View File

@@ -0,0 +1,13 @@
//! Assignment 2: Mastering common programming concepts (1/2).
//!
//! The primary goal of this assignment is to re-learn the common programming concepts in Rust, especially those in the Rust Book chapters 3 and 5.
//! Please make sure you're comfortable with the concepts to proceed on to the next assignments.
//!
//! You should fill out the `todo!()` placeholders in such a way that `/scripts/grade-02.sh` works fine.
//! See `*_grade.rs` and `/scripts/grade-02.sh` for the test script.
pub mod small_problems;
mod small_problems_grade;
pub mod vec_and_mat;
mod vec_and_mat_grade;

View File

@@ -0,0 +1,46 @@
//! Small problems.
const FAHRENHEIT_OFFSET: f64 = 32.0;
const FAHRENHEIT_SCALE: f64 = 5.0 / 9.0;
/// Converts Fahrenheit to Celsius temperature degree.
pub fn fahrenheit_to_celsius(degree: f64) -> f64 {
todo!()
}
/// Capitalizes English alphabets (leaving the other characters intact).
pub fn capitalize(input: String) -> String {
todo!()
}
/// Returns the sum of the given array. (We assume the absence of integer overflow.)
pub fn sum_array(input: &[u64]) -> u64 {
todo!()
}
/// Given a non-negative integer, say `n`, return the smallest integer of the form `3^m` that's greater than or equal to `n`.
///
/// For instance, up3(6) = 9, up3(9) = 9, up3(10) = 27. (We assume the absence of integer overflow.)
pub fn up3(n: u64) -> u64 {
todo!()
}
/// Returns the greatest common divisor (GCD) of two non-negative integers. (We assume the absence of integer overflow.)
pub fn gcd(lhs: u64, rhs: u64) -> u64 {
todo!()
}
/// Returns the array of nC0, nC1, nC2, ..., nCn, where nCk = n! / (k! * (n-k)!). (We assume the absence of integer overflow.)
///
/// Consult <https://en.wikipedia.org/wiki/Pascal%27s_triangle> for computation of binomial coefficients without integer overflow.
pub fn chooses(n: u64) -> Vec<u64> {
todo!()
}
/// Returns the "zip" of two vectors.
///
/// For instance, `zip(vec![1, 2, 3], vec![4, 5])` equals to `vec![(1, 4), (2, 5)]`.
/// Here, `3` is ignored because it doesn't have a partner.
pub fn zip(lhs: Vec<u64>, rhs: Vec<u64>) -> Vec<(u64, u64)> {
todo!()
}

View File

@@ -0,0 +1,137 @@
#[cfg(test)]
mod test {
use crate::assignments::assignment02::small_problems::*;
#[test]
fn test_fahrenheit() {
assert_eq!(fahrenheit_to_celsius(32.0), 0.0);
assert_eq!(fahrenheit_to_celsius(212.0), 100.0);
}
#[test]
fn test_capitalize() {
assert_eq!(
capitalize(String::from("aAbbBcccCddddD❤한글과✓")),
String::from("AABBBCCCCDDDDD❤한글과✓"),
);
assert_eq!(capitalize(String::from("Tschüß")), String::from("TSCHüß"));
}
#[test]
fn test_up3() {
assert_eq!(up3(0), 1);
assert_eq!(up3(1), 1);
assert_eq!(up3(6), 9);
assert_eq!(up3(9), 9);
assert_eq!(up3(10), 27);
assert_eq!(up3(1_000_000), 1_594_323);
assert_eq!(up3(3u64.pow(39).wrapping_add(1)), 3u64.pow(40));
assert_eq!(up3(3u64.pow(40)), 3u64.pow(40));
}
#[test]
fn test_gcd() {
assert_eq!(gcd(5, 1), 1);
assert_eq!(gcd(3, 3), 3);
assert_eq!(gcd(2, 6), 2);
assert_eq!(gcd(24, 18), 6);
assert_eq!(gcd(20, 63), 1);
assert_eq!(gcd(0, 33), 33);
}
#[test]
fn test_sum_array() {
assert_eq!(sum_array(&[]), 0);
assert_eq!(sum_array(&[1]), 1);
assert_eq!(sum_array(&[1, 2, 3, 4, 5, 100]), 115);
}
#[test]
fn test_chooses() {
assert_eq!(chooses(0), vec![1]);
assert_eq!(chooses(1), vec![1, 1]);
assert_eq!(chooses(5), vec![1, 5, 10, 10, 5, 1]);
assert_eq!(chooses(6), vec![1, 6, 15, 20, 15, 6, 1]);
assert_eq!(
chooses(67),
vec![
1,
67,
2211,
47905,
766480,
9657648,
99795696,
869648208,
6522361560,
42757703560,
247994680648,
1285063345176,
5996962277488,
25371763481680,
97862516286480,
345780890878896,
1123787895356412,
3371363686069236,
9364899127970100,
24151581961607100,
57963796707857040,
129728497393775280,
271250494550621040,
530707489338171600,
972963730453314600,
1673497616379701112,
2703342303382594104,
4105075349580976232,
5864393356544251760,
7886597962249166160,
9989690752182277136,
11923179284862717872,
13413576695470557606,
14226520737620288370,
14226520737620288370,
13413576695470557606,
11923179284862717872,
9989690752182277136,
7886597962249166160,
5864393356544251760,
4105075349580976232,
2703342303382594104,
1673497616379701112,
972963730453314600,
530707489338171600,
271250494550621040,
129728497393775280,
57963796707857040,
24151581961607100,
9364899127970100,
3371363686069236,
1123787895356412,
345780890878896,
97862516286480,
25371763481680,
5996962277488,
1285063345176,
247994680648,
42757703560,
6522361560,
869648208,
99795696,
9657648,
766480,
47905,
2211,
67,
1
]
);
}
#[test]
fn test_zip() {
assert_eq!(zip(vec![1, 2], vec![4, 5]), vec![(1, 4), (2, 5)]);
assert_eq!(zip(vec![1, 2, 3], vec![4, 5]), vec![(1, 4), (2, 5)]);
assert_eq!(zip(vec![1, 2], vec![4, 5, 6]), vec![(1, 4), (2, 5)]);
assert_eq!(zip(vec![], vec![4, 5]), vec![]);
}
}

View File

@@ -0,0 +1,121 @@
//! Vector and matrices.
//!
//! You will implement simple operations on vectors and matrices.
use std::ops::Mul;
/// 2x2 matrix of the following configuration:
///
/// a, b
/// c, d
#[derive(Debug, Clone, Copy)]
struct Mat2 {
a: u64,
b: u64,
c: u64,
d: u64,
}
/// 2x1 matrix of the following configuration:
///
/// a
/// b
#[derive(Debug, Clone, Copy)]
struct Vec2 {
a: u64,
b: u64,
}
impl Mat2 {
/// Creates an identity matrix.
fn new() -> Self {
Self {
a: 1,
b: 0,
c: 0,
d: 1,
}
}
}
impl Mul<Mat2> for Mat2 {
type Output = Mat2;
fn mul(self, rhs: Mat2) -> Self::Output {
todo!()
}
}
impl Mul<Vec2> for Mat2 {
type Output = Vec2;
/// Multiplies the matrix by the vector.
fn mul(self, rhs: Vec2) -> Self::Output {
todo!()
}
}
impl Mat2 {
/// Calculates the power of matrix.
fn power(self, power: u64) -> Mat2 {
todo!()
}
}
impl Vec2 {
/// Gets the upper value of vector.
fn get_upper(self) -> u64 {
todo!()
}
}
/// The matrix used for calculating Fibonacci numbers.
const FIBONACCI_MAT: Mat2 = Mat2 {
a: 1,
b: 1,
c: 1,
d: 0,
};
/// The vector used for calculating Fibonacci numbers.
const FIBONACCI_VEC: Vec2 = Vec2 { a: 1, b: 0 };
/// Calculates the Fibonacci number. (We assume the absence of integer overflow.)
///
/// Consult <https://web.media.mit.edu/~holbrow/post/calculating-fibonacci-numbers-with-matrices-and-linear-algebra/> for matrix computation of Fibonacci numbers.
pub fn fibonacci(n: u64) -> u64 {
(FIBONACCI_MAT.power(n) * FIBONACCI_VEC).get_upper()
}
/// 2x2 floating-point matrix of the following configuration:
///
/// a, b
/// c, d
#[derive(Debug, Clone, Copy)]
pub struct FMat2 {
/// row 1, column 1
pub a: f64,
/// row 1, column 2
pub b: f64,
/// row 2, column 1
pub c: f64,
/// row 2, column 2
pub d: f64,
}
impl FMat2 {
/// Returns the inverse of the given matrix. (We assume the given matrix is always invertible.)
/// HINT: https://www.mathcentre.ac.uk/resources/uploaded/sigma-matrices7-2009-1.pdf
///
/// # Example
///
/// ```
/// assert_eq!(
/// Mat2 { a: 1.0, b: 1.0, c: 2.0, d: 3.0 }.inverse(),
/// Mat2 { a: 3.0, b: -1.0, c: -2.0, d: 1.0}
/// );
/// ```
pub fn inverse(self) -> Self {
todo!()
}
}

View File

@@ -0,0 +1,60 @@
#[cfg(test)]
mod test {
use crate::assignments::assignment02::vec_and_mat::*;
#[test]
fn test_fibonacci() {
assert_eq!(fibonacci(0), 1);
assert_eq!(fibonacci(1), 1);
assert_eq!(fibonacci(2), 2);
assert_eq!(fibonacci(3), 3);
assert_eq!(fibonacci(4), 5);
assert_eq!(fibonacci(5), 8);
assert_eq!(fibonacci(6), 13);
assert_eq!(fibonacci(7), 21);
assert_eq!(fibonacci(50), 20365011074);
assert_eq!(fibonacci(92), 12200160415121876738);
}
// Equivalence between two floating-point matrices, as element-wise equivalence
use std::cmp::PartialEq;
impl PartialEq for FMat2 {
fn eq(&self, other: &FMat2) -> bool {
self.a == other.a && self.b == other.b && self.c == other.c && self.d == other.d
}
}
#[test]
fn test_inverse() {
assert_eq!(
FMat2 {
a: 1.0,
b: 1.0,
c: 2.0,
d: 3.0
}
.inverse(),
FMat2 {
a: 3.0,
b: -1.0,
c: -2.0,
d: 1.0
}
);
assert_eq!(
FMat2 {
a: 2.0,
b: 3.0,
c: 5.0,
d: 7.0
}
.inverse(),
FMat2 {
a: -7.0,
b: 3.0,
c: 5.0,
d: -2.0
}
);
}
}