mirror of
https://github.com/kmc7468/cs220.git
synced 2025-12-12 21:08:45 +00:00
why3 assignment: add one-line comment, fixed max spec
This commit is contained in:
@@ -1,9 +1,14 @@
|
||||
(* Max
|
||||
|
||||
Given an array `a` of natural numbers with length `n`,
|
||||
return the maximum element of the array.
|
||||
Given an array `a` of integers with length `n` greater than `0`,
|
||||
return `max_idx`, the index of the maximum element of that array.
|
||||
|
||||
You should stengthen the loop invariant.
|
||||
E.g. `max_idx [5, 12, 34, 10] 4` will return `2`
|
||||
E.g. `max_idx [4, 3, 2] 3` will return `0`
|
||||
E.g. `max_idx [1, 2, 3, 4] 4` will return `3`
|
||||
|
||||
Prove the below program indeed follows the given specification,
|
||||
by giving an appropriate invariant.
|
||||
*)
|
||||
|
||||
module Max
|
||||
@@ -12,18 +17,21 @@ module Max
|
||||
use ref.Ref
|
||||
use array.Array
|
||||
|
||||
let max (a: array int) (n: int) : (max: int)
|
||||
let max_idx (a: array int) (n: int) : (max_idx: int)
|
||||
requires { length a > 0 }
|
||||
requires { n = length a }
|
||||
requires { forall i. 0 <= i < n -> a[i] >= 0 }
|
||||
ensures { forall i. 0 <= i < n -> a[i] <= max }
|
||||
ensures { exists i. 0 <= i < n -> a[i] = max }
|
||||
= let ref max = 0 in
|
||||
ensures { 0 <= max_idx <= n-1 }
|
||||
ensures { forall i. 0 <= i <= n-1 -> a[i] <= a[max_idx] }
|
||||
=
|
||||
let ref max_idx = 0 in
|
||||
for i = 0 to n-1 do
|
||||
invariant { 0 <= max_idx <= n-1 }
|
||||
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
|
||||
invariant { true (* TODO: Replace `true` with your solution *) }
|
||||
invariant { true (* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line number 30. DON'T add another line of codes. *) }
|
||||
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
|
||||
if max < a[i] then max <- a[i];
|
||||
if a[max_idx] < a[i] then max_idx <- i;
|
||||
done;
|
||||
max
|
||||
max_idx
|
||||
|
||||
end
|
||||
|
||||
|
||||
@@ -10,13 +10,15 @@ module Pascal
|
||||
use ref.Ref
|
||||
use array.Array
|
||||
|
||||
(* The mathematical combination, defined recursively. *)
|
||||
let rec function comb (n k: int) : int
|
||||
requires { 0 <= k <= n }
|
||||
variant { n }
|
||||
ensures { result >= 1 }
|
||||
= if k = 0 || k = n then 1 else comb (n-1) k + comb (n-1) (k-1)
|
||||
|
||||
(* Insert appropriate invariants so that Why3 can verify this function. *)
|
||||
(* Computes the Pascal's triangle and returns the `n`th row of it. *)
|
||||
(* Insert an appropriate invariant so that Why3 can verify this function. *)
|
||||
(* You SHOULD understand the Pascal's triangle first to find good invariants. *)
|
||||
let chooses (n : int) : array int
|
||||
requires { n > 0 }
|
||||
@@ -30,7 +32,7 @@ module Pascal
|
||||
let new_row = Array.make (r+1) 1 in
|
||||
for c = 1 to r-1 do
|
||||
(* IMPORTANT: DON'T MODIFY THE ABOVE LINES *)
|
||||
invariant { true (* TODO: Replace `true` with your solution *) }
|
||||
invariant { true (* TODO: Replace `true` with your solution. Your solution MUST be a single line, at line number 35. DON'T add another lines. *) }
|
||||
(* IMPORTANT: DON'T MODIFY THE BELOW LINES *)
|
||||
new_row[c] <- row[c-1] + row[c]
|
||||
done;
|
||||
|
||||
Reference in New Issue
Block a user