Update homework 1 and 2

This commit is contained in:
Jeehoon Kang
2020-03-26 03:38:20 +09:00
parent 241a66fcc1
commit 8938a7ad8f
40 changed files with 5171 additions and 1504 deletions

612
src/ir/dtype.rs Normal file
View File

@@ -0,0 +1,612 @@
use core::convert::TryFrom;
use core::fmt;
use core::ops::Deref;
use itertools::izip;
use lang_c::ast;
use lang_c::span::Node;
use std::hash::Hash;
use failure::Fail;
#[derive(Debug, PartialEq, Fail)]
pub enum DtypeError {
/// For uncommon error
#[fail(display = "{}", message)]
Misc { message: String },
}
pub trait HasDtype {
fn dtype(&self) -> Dtype;
}
#[derive(Default)]
struct BaseDtype {
scalar: Option<ast::TypeSpecifier>,
signed_option: Option<ast::TypeSpecifier>,
is_const: bool,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum Dtype {
Unit {
is_const: bool,
},
Int {
width: usize,
is_signed: bool,
is_const: bool,
},
Float {
width: usize,
is_const: bool,
},
Pointer {
inner: Box<Dtype>,
is_const: bool,
},
Function {
ret: Box<Dtype>,
params: Vec<Dtype>,
},
}
impl BaseDtype {
/// Apply `TypeSpecifier` to `BaseDtype`
///
/// let's say declaration is `const int a;`, if `self` represents `int`
/// and `type_specifier` represents `const`, `self` is transformed to
/// representing `const int` after function performs.
///
/// # Arguments
///
/// * `self` - Part that has been converted to 'BaseDtype' on the declaration
/// * `type_qualifier` - type qualifiers requiring apply to 'self' immediately
///
#[inline]
fn apply_type_specifier(
&mut self,
type_specifier: &ast::TypeSpecifier,
) -> Result<(), DtypeError> {
match type_specifier {
ast::TypeSpecifier::Unsigned | ast::TypeSpecifier::Signed => {
if self.signed_option.is_some() {
return Err(DtypeError::Misc {
message: "duplicate signed option".to_string(),
});
}
self.signed_option = Some(type_specifier.clone());
}
ast::TypeSpecifier::Void
| ast::TypeSpecifier::Char
| ast::TypeSpecifier::Int
| ast::TypeSpecifier::Float => {
if self.scalar.is_some() {
return Err(DtypeError::Misc {
message: "two or more scalar types in declaration specifiers".to_string(),
});
}
self.scalar = Some(type_specifier.clone());
}
_ => todo!("support more like `double` in the future"),
}
Ok(())
}
/// Apply `Typequalifier` to `BaseDtype`
///
/// let's say declaration is `const int a;`, if `self` represents `int`
/// and `type_qualifier` represents `const`, `self` is transformed to
/// representing `const int` after function performs.
///
/// # Arguments
///
/// * `self` - Part that has been converted to 'BaseDtype' on the declaration
/// * `type_qualifier` - type qualifiers requiring apply to 'self' immediately
///
#[inline]
fn apply_type_qualifier(
&mut self,
type_qualifier: &ast::TypeQualifier,
) -> Result<(), DtypeError> {
match type_qualifier {
ast::TypeQualifier::Const => {
// duplicate `const` is allowed
self.is_const = true;
}
_ => panic!("type qualifier is unsupported except `const`"),
}
Ok(())
}
pub fn apply_typename_specifier(
&mut self,
typename_specifier: &ast::SpecifierQualifier,
) -> Result<(), DtypeError> {
match typename_specifier {
ast::SpecifierQualifier::TypeSpecifier(type_specifier) => {
self.apply_type_specifier(&type_specifier.node)?
}
ast::SpecifierQualifier::TypeQualifier(type_qualifier) => {
self.apply_type_qualifier(&type_qualifier.node)?
}
}
Ok(())
}
pub fn apply_declaration_specifier(
&mut self,
declaration_specifier: &ast::DeclarationSpecifier,
) -> Result<(), DtypeError> {
match declaration_specifier {
// TODO: `dtype` must be defined taking into account all specifier information.
ast::DeclarationSpecifier::StorageClass(_storage_class_spec) => {
todo!("analyze storage class specifier keyword to create correct `dtype`")
}
ast::DeclarationSpecifier::TypeSpecifier(type_specifier) => {
self.apply_type_specifier(&type_specifier.node)?
}
ast::DeclarationSpecifier::TypeQualifier(type_qualifier) => {
self.apply_type_qualifier(&type_qualifier.node)?
}
_ => panic!("is_unsupported"),
}
Ok(())
}
/// Apply `PointerQualifier` to `BaseDtype`
///
/// let's say pointer declarator is `* const` of `const int * const a;`.
/// If `self` represents nothing, and `pointer_qualifier` represents `const`
/// between first and second asterisk, `self` is transformed to
/// representing `const` after function performs. This information is used later
/// when generating `Dtype`.
///
/// # Arguments
///
/// * `self` - Part that has been converted to 'BaseDtype' on the pointer declarator
/// * `pointer_qualifier` - Pointer qualifiers requiring apply to 'BaseDtype' immediately
///
pub fn apply_pointer_qualifier(
&mut self,
pointer_qualifier: &ast::PointerQualifier,
) -> Result<(), DtypeError> {
match pointer_qualifier {
ast::PointerQualifier::TypeQualifier(type_qualifier) => {
self.apply_type_qualifier(&type_qualifier.node)?;
}
ast::PointerQualifier::Extension(_) => {
panic!("ast::PointerQualifier::Extension is unsupported")
}
}
Ok(())
}
pub fn apply_typename_specifiers(
&mut self,
typename_specifiers: &[Node<ast::SpecifierQualifier>],
) -> Result<(), DtypeError> {
for ast_spec in typename_specifiers {
self.apply_typename_specifier(&ast_spec.node)?;
}
Ok(())
}
pub fn apply_declaration_specifiers(
&mut self,
declaration_specifiers: &[Node<ast::DeclarationSpecifier>],
) -> Result<(), DtypeError> {
for ast_spec in declaration_specifiers {
self.apply_declaration_specifier(&ast_spec.node)?;
}
Ok(())
}
}
impl TryFrom<BaseDtype> for Dtype {
type Error = DtypeError;
/// Derive a data type containing scalar type from specifiers.
///
/// # Example
///
/// For declaration is `const unsigned int * p`, `specifiers` is `const unsigned int`,
/// and the result is `Dtype::Int{ width: 32, is_signed: false, is_const: ture }`
fn try_from(spec: BaseDtype) -> Result<Self, DtypeError> {
assert!(
!(spec.scalar.is_none() && spec.signed_option.is_none() && !spec.is_const),
"BaseDtype is empty"
);
// Creates `dtype` from scalar.
let mut dtype = if let Some(t) = spec.scalar {
match t {
ast::TypeSpecifier::Void => Self::unit(),
ast::TypeSpecifier::Unsigned | ast::TypeSpecifier::Signed => {
panic!("Signed option to scalar is not supported")
}
ast::TypeSpecifier::Bool => Self::BOOL,
ast::TypeSpecifier::Char => Self::CHAR,
ast::TypeSpecifier::Short => Self::SHORT,
ast::TypeSpecifier::Int => Self::INT,
ast::TypeSpecifier::Long => Self::LONG,
ast::TypeSpecifier::Float => Self::FLOAT,
ast::TypeSpecifier::Double => Self::DOUBLE,
_ => panic!("Unsupported ast::TypeSpecifier"),
}
} else {
Dtype::default()
};
// Applies signedness.
if let Some(signed_option) = spec.signed_option {
let is_signed = match signed_option {
ast::TypeSpecifier::Signed => true,
ast::TypeSpecifier::Unsigned => false,
_ => panic!(
"`signed_option` must be `TypeSpecifier::Signed` or `TypeSpecifier::Unsigned`"
),
};
dtype = dtype.set_signed(is_signed);
}
// Applies constness.
assert!(!dtype.is_const());
dtype = dtype.set_const(spec.is_const);
Ok(dtype)
}
}
impl TryFrom<&ast::TypeName> for Dtype {
type Error = DtypeError;
/// Derive a data type from typename.
fn try_from(type_name: &ast::TypeName) -> Result<Self, Self::Error> {
let mut spec = BaseDtype::default();
BaseDtype::apply_typename_specifiers(&mut spec, &type_name.specifiers)?;
let mut dtype = Self::try_from(spec)?;
if let Some(declarator) = &type_name.declarator {
dtype = dtype.with_ast_declarator(&declarator.node)?;
}
Ok(dtype)
}
}
impl TryFrom<&ast::ParameterDeclaration> for Dtype {
type Error = DtypeError;
/// Generate `Dtype` based on parameter declaration
fn try_from(parameter_decl: &ast::ParameterDeclaration) -> Result<Self, Self::Error> {
let mut spec = BaseDtype::default();
BaseDtype::apply_declaration_specifiers(&mut spec, &parameter_decl.specifiers)?;
let mut dtype = Self::try_from(spec)?;
if let Some(declarator) = &parameter_decl.declarator {
dtype = dtype.with_ast_declarator(&declarator.node)?;
}
Ok(dtype)
}
}
impl Dtype {
pub const BOOL: Self = Self::int(1);
pub const CHAR: Self = Self::int(8);
pub const SHORT: Self = Self::int(16);
pub const INT: Self = Self::int(32);
pub const LONG: Self = Self::int(64);
pub const LONGLONG: Self = Self::int(64);
pub const FLOAT: Self = Self::float(32);
pub const DOUBLE: Self = Self::float(64);
const WIDTH_OF_BYTE: usize = 8;
// TODO: consider architecture dependency in the future
const WIDTH_OF_POINTER: usize = 32;
#[inline]
pub const fn unit() -> Self {
Self::Unit { is_const: false }
}
#[inline]
pub const fn int(width: usize) -> Self {
Self::Int {
width,
is_signed: true,
is_const: false,
}
}
#[inline]
pub const fn float(width: usize) -> Self {
Self::Float {
width,
is_const: false,
}
}
#[inline]
pub fn pointer(inner: Dtype) -> Self {
Self::Pointer {
inner: Box::new(inner),
is_const: false,
}
}
#[inline]
pub fn function(ret: Dtype, params: Vec<Dtype>) -> Self {
Self::Function {
ret: Box::new(ret),
params,
}
}
#[inline]
pub fn get_int_width(&self) -> Option<usize> {
if let Self::Int { width, .. } = self {
Some(*width)
} else {
None
}
}
#[inline]
pub fn get_float_width(&self) -> Option<usize> {
if let Self::Float { width, .. } = self {
Some(*width)
} else {
None
}
}
#[inline]
pub fn get_pointer_inner(&self) -> Option<&Dtype> {
if let Self::Pointer { inner, .. } = self {
Some(inner.deref())
} else {
None
}
}
#[inline]
pub fn get_function_inner(&self) -> Option<(&Dtype, &Vec<Dtype>)> {
if let Self::Function { ret, params } = self {
Some((ret.deref(), params))
} else {
None
}
}
#[inline]
pub fn is_scalar(&self) -> bool {
match self {
Self::Unit { .. } => todo!(),
Self::Int { .. } => true,
Self::Float { .. } => true,
_ => false,
}
}
#[inline]
pub fn is_int_signed(&self) -> bool {
match self {
Self::Int { is_signed, .. } => *is_signed,
_ => panic!("only `Dtype::Int` can be judged whether it is sigend"),
}
}
#[inline]
pub fn is_const(&self) -> bool {
match self {
Self::Unit { is_const } => *is_const,
Self::Int { is_const, .. } => *is_const,
Self::Float { is_const, .. } => *is_const,
Self::Pointer { is_const, .. } => *is_const,
Self::Function { .. } => {
panic!("there should be no case that check whether `Function` is `const`")
}
}
}
pub fn set_const(self, is_const: bool) -> Self {
match self {
Self::Unit { .. } => Self::Unit { is_const },
Self::Int {
width, is_signed, ..
} => Self::Int {
width,
is_signed,
is_const,
},
Self::Float { width, .. } => Self::Float { width, is_const },
Self::Pointer { inner, .. } => Self::Pointer { inner, is_const },
Self::Function { .. } => panic!("`const` cannot be applied to `Dtype::Function`"),
}
}
/// Return byte size of `Dtype`
pub fn size_of(&self) -> Result<usize, DtypeError> {
// TODO: consider complex type like array, structure in the future
match self {
Self::Unit { .. } => Ok(0),
Self::Int { width, .. } => Ok(*width / Self::WIDTH_OF_BYTE),
Self::Float { width, .. } => Ok(*width / Self::WIDTH_OF_BYTE),
Self::Pointer { .. } => Ok(Self::WIDTH_OF_POINTER / Self::WIDTH_OF_BYTE),
Self::Function { .. } => Err(DtypeError::Misc {
message: "`sizeof` cannot be used with function types".to_string(),
}),
}
}
/// Return alignment requirements of `Dtype`
pub fn align_of(&self) -> Result<usize, DtypeError> {
// TODO: consider complex type like array, structure in the future
// TODO: when considering complex type like a structure,
// the calculation method should be different from `Dtype::size_of`.
match self {
Self::Unit { .. } => Ok(0),
Self::Int { width, .. } => Ok(*width / Self::WIDTH_OF_BYTE),
Self::Float { width, .. } => Ok(*width / Self::WIDTH_OF_BYTE),
Self::Pointer { .. } => Ok(Self::WIDTH_OF_POINTER / Self::WIDTH_OF_BYTE),
Self::Function { .. } => Err(DtypeError::Misc {
message: "`alignof` cannot be used with function types".to_string(),
}),
}
}
pub fn set_signed(self, is_signed: bool) -> Self {
match self {
Self::Int {
width, is_const, ..
} => Self::Int {
width,
is_signed,
is_const,
},
_ => panic!("`signed` and `unsigned` only be applied to `Dtype::Int`"),
}
}
/// Derive a data type from declaration specifiers.
pub fn try_from_ast_declaration_specifiers(
specifiers: &[Node<ast::DeclarationSpecifier>],
) -> Result<Self, DtypeError> {
let mut spec = BaseDtype::default();
BaseDtype::apply_declaration_specifiers(&mut spec, specifiers)?;
Self::try_from(spec)
}
/// Generate `Dtype` based on declarator and `base_dtype` which has scalar type.
///
/// let's say declaration is `const int * const * const a;`.
/// In general `base_dtype` start with `const int` which has scalar type and
/// `declarator` represents `* const * const` with `ast::Declarator`
///
/// # Arguments
///
/// * `declarator` - Parts requiring conversion to 'Dtype' on the declaration
/// * `base_dtype` - Part that has been converted to 'Dtype' on the declaration
///
pub fn with_ast_declarator(mut self, declarator: &ast::Declarator) -> Result<Self, DtypeError> {
for derived_decl in &declarator.derived {
self = match &derived_decl.node {
ast::DerivedDeclarator::Pointer(pointer_qualifiers) => {
let mut specifier = BaseDtype::default();
for qualifier in pointer_qualifiers {
specifier.apply_pointer_qualifier(&qualifier.node)?;
}
Self::pointer(self).set_const(specifier.is_const)
}
ast::DerivedDeclarator::Array(_array_decl) => todo!(),
ast::DerivedDeclarator::Function(func_decl) => {
let params = func_decl
.node
.parameters
.iter()
.map(|p| Self::try_from(&p.node))
.collect::<Result<Vec<_>, _>>()?;
Self::function(self, params)
}
ast::DerivedDeclarator::KRFunction(kr_func_decl) => {
// K&R function is allowed only when it has no parameter
assert!(kr_func_decl.is_empty());
Self::function(self, Vec::new())
}
};
}
let declarator_kind = &declarator.kind;
match &declarator_kind.node {
ast::DeclaratorKind::Abstract => panic!("ast::DeclaratorKind::Abstract is unsupported"),
ast::DeclaratorKind::Identifier(_) => Ok(self),
ast::DeclaratorKind::Declarator(declarator) => {
self.with_ast_declarator(&declarator.node)
}
}
}
/// Check whether type conflict exists between the two `Dtype` objects.
///
/// let's say expression is `const int a = 0; int b = 0; int c = a + b`.
/// Although `const int` of `a` and `int` of `b` looks different, `Plus`(+) operations between
/// these two types are possible without any type-casting. There is no conflict between
/// `const int` and `int`.
///
/// However, only the outermost const is ignored.
/// If check equivalence between `const int *const` and `int *`, result is false. Because
/// the second `const` (means left most `const`) of the `const int *const` is missed in `int *`.
/// By the way, outermost `const` (means right most `const`) is not a consideration here.
pub fn is_compatible(&self, other: &Self) -> bool {
match (self, other) {
(Self::Unit { .. }, Self::Unit { .. })
| (Self::Int { .. }, Self::Int { .. })
| (Self::Float { .. }, Self::Float { .. })
| (Self::Pointer { .. }, Self::Pointer { .. }) => {
self.clone().set_const(false) == other.clone().set_const(false)
}
(
Self::Function { ret, params },
Self::Function {
ret: other_ret,
params: other_params,
},
) => {
ret == other_ret
&& params.len() == other_params.len()
&& izip!(params, other_params).all(|(l, r)| l.is_compatible(r))
}
_ => false,
}
}
}
impl fmt::Display for Dtype {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Unit { is_const } => write!(f, "{}unit", if *is_const { "const " } else { "" }),
Self::Int {
width,
is_signed,
is_const,
} => write!(
f,
"{}{}{}",
if *is_const { "const " } else { "" },
if *is_signed { "i" } else { "u" },
width
),
Self::Float { width, is_const } => {
write!(f, "{}f{}", if *is_const { "const " } else { "" }, width)
}
Self::Pointer { inner, is_const } => {
write!(f, "{}* {}", inner, if *is_const { "const" } else { "" })
}
Self::Function { ret, params } => write!(
f,
"{} ({})",
ret,
params
.iter()
.map(|p| p.to_string())
.collect::<Vec<_>>()
.join(", ")
),
}
}
}
impl Default for Dtype {
fn default() -> Self {
// default dtype is `int`(i32)
Self::INT
}
}