Add why3 files

This commit is contained in:
Jeehoon Kang
2022-09-03 23:10:14 +09:00
parent 80aba708a4
commit db7517ffb6
4 changed files with 170 additions and 0 deletions

View File

@@ -0,0 +1,23 @@
(* Binary search
A classical example. Searches a sorted array for a given value v.
Consult <https://gitlab.inria.fr/why3/why3/-/blob/master/examples/binary_search.mlw>.
*)
module BinarySearch
use import int.Int
use import int.ComputerDivision
use import ref.Ref
use import array.Array
let binary_search (a : array int) (v : int)
requires { forall i1 i2 : int. 0 <= i1 < i2 < length a -> a[i1] <= a[i2] }
ensures { 0 <= result <= length a }
ensures { forall i: int. 0 <= i < result -> a[i] < v }
ensures { result < length a -> a[result] >= v }
=
let l = ref (-1) in
let u = ref (length a) in
!u - !l (* TODO *)
end

View File

@@ -0,0 +1,34 @@
(* Euclidean division
1. Prove soundness, i.e. (division a b) returns an integer q such that
a = bq+r and 0 <= r < b for some r.
(You have to strengthen the precondition.)
Do you have to require b <> 0? Why?
2. Prove termination.
(You may have to strengthen the precondition even further.)
*)
module Division
use int.Int
let division (a b: int) : int
requires { a > 0 /\ b > 0 }
ensures { exists r: int. a = b * result + r /\ 0 <= r < b }
=
let ref q = 0 in
let ref r = a in
while r >= b do
invariant { a = b * q + r /\ r >= 0 }
variant { r }
q <- q + 1;
r <- r - b
done;
q
let main () =
division 1000 42
end

55
assets/why3/ex2_fact.mlw Normal file
View File

@@ -0,0 +1,55 @@
(* Two programs to compute the factorial
Note: function "fact" from module int.Fact (already imported)
can be used in specifications.
Questions:
1. In module FactRecursive:
a. Prove soundness of function fact_rec.
b. Prove its termination.
2. In module FactLoop:
a. Prove soundness of function fact_loop.
b. Prove its termination.
c. Change the code to use a for loop instead of a while loop.
*)
module FactRecursive
use int.Int
use int.Fact
let rec fact_rec (n: int) : int
requires { n >= 0 }
ensures { result = fact n }
variant { n }
=
if n = 0 then 1 else n * fact_rec (n - 1)
end
module FactLoop
use int.Int
use int.Fact
let fact_loop (n: int) : int
requires { 0 < n }
ensures { result = fact n }
= let ref m = 0 in
let ref r = 1 in
while m < n do
invariant { 0 <= m <= n /\ r = fact m }
variant { n - m }
m <- m + 1;
r <- r * m
done;
r
end

View File

@@ -0,0 +1,58 @@
(* Two Way Sort
The following program sorts an array of Boolean values, with False<True.
Questions:
1. Prove safety i.e. the absence of array access out of bounds.
2. Prove termination.
3. Prove that array a is sorted after execution of function two_way_sort
(using the predicate sorted that is provided).
4. Show that after execution the array contents is a permutation of its
initial contents. Use the library predicate "permut_all" to do so
(the corresponding module ArrayPermut is already imported).
You can refer to the contents of array a at the beginning of the
function with notation "a at Init".
*)
module TwoWaySort
use int.Int
use bool.Bool
use ref.Refint
use array.Array
use array.ArraySwap
use array.ArrayPermut
predicate (<<) (x y: bool) = x = False \/ y = True
predicate sorted (a: array bool) =
forall i1 i2: int. 0 <= i1 <= i2 < a.length -> a[i1] << a[i2]
let two_way_sort (a: array bool) : unit
ensures { true }
=
label Init in
let ref i = 0 in
let ref j = length a - 1 in
while i < j do
invariant { forall i1: int. 0 <= i1 < i -> a[i1] = False }
invariant { forall i2: int. j < i2 < length a -> a[i2] = True }
invariant { 0 <= i /\ j < length a }
variant { j - i }
if not a[i] then
incr i
else if a[j] then
decr j
else begin
swap a i j;
incr i;
decr j
end
done
end