Files
cs220/src/assignments/assignment06/semiring.rs
2024-10-09 16:55:01 +00:00

243 lines
5.5 KiB
Rust

//! Semiring
use std::collections::HashMap;
use std::fmt::Debug;
use itertools::Itertools;
/// Semiring.
///
/// Consult <https://en.wikipedia.org/wiki/Semiring>.
pub trait Semiring: Debug + Clone + PartialEq {
/// Additive identity.
fn zero() -> Self;
/// Multiplicative identity.
fn one() -> Self;
/// Addition operation.
fn add(&self, rhs: &Self) -> Self;
/// Multiplication operation.
fn mul(&self, rhs: &Self) -> Self;
}
/// Converts integer to semiring value.
pub fn from_usize<T: Semiring>(value: usize) -> T {
let mut result = T::zero();
let one = T::one();
for _ in 0..value {
result = T::add(&result, &one);
}
result
}
impl Semiring for u64 {
fn zero() -> Self {
0
}
fn one() -> Self {
1
}
fn add(&self, rhs: &Self) -> Self {
self + rhs
}
fn mul(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl Semiring for i64 {
fn zero() -> Self {
0
}
fn one() -> Self {
1
}
fn add(&self, rhs: &Self) -> Self {
self + rhs
}
fn mul(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl Semiring for f64 {
fn zero() -> Self {
0.0
}
fn one() -> Self {
1.0
}
fn add(&self, rhs: &Self) -> Self {
self + rhs
}
fn mul(&self, rhs: &Self) -> Self {
self * rhs
}
}
/// Polynomials with coefficient in `C`.
///
/// For example, polynomial `x^2 + 5x + 6` is represented in `Polynomial<u64>` as follows:
///
/// ```ignore
/// Polynomial {
/// coefficients: {
/// 2: 1,
/// 1: 5,
/// 0: 6,
/// },
/// }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Polynomial<C: Semiring> {
coefficients: HashMap<u64, C>,
}
impl<C: Semiring> Semiring for Polynomial<C> {
fn zero() -> Self {
Self {
coefficients: HashMap::new(),
}
}
fn one() -> Self {
Self {
coefficients: HashMap::from([(0, C::one())]),
}
}
fn add(&self, rhs: &Self) -> Self {
let mut coefficients = self.coefficients.clone();
for (deg, coef) in &rhs.coefficients {
_ = coefficients
.entry(*deg)
.and_modify(|value| *value = value.add(coef))
.or_insert(coef.clone());
}
coefficients.retain(|_, coef| *coef != C::zero());
Self { coefficients }
}
fn mul(&self, rhs: &Self) -> Self {
let mut coefficients: HashMap<u64, C> = HashMap::new();
for (ldeg, lcoef) in &self.coefficients {
for (rdeg, rcoef) in &rhs.coefficients {
let coef = lcoef.mul(rcoef);
_ = coefficients
.entry(ldeg + rdeg)
.and_modify(|value| *value = value.add(&coef))
.or_insert(coef);
}
}
coefficients.retain(|_, coef| *coef != C::zero());
Self { coefficients }
}
}
impl<C: Semiring> Polynomial<C> {
/// Constructs polynomial `x`.
pub fn x() -> Self {
Self {
coefficients: HashMap::from([(1, C::one())]),
}
}
/// Evaluates the polynomial with the given value.
pub fn eval(&self, value: C) -> C {
let mut result = C::zero();
for (deg, coef) in &self.coefficients {
let mut xn = C::one();
let mut n = 0;
while n < *deg {
xn = xn.mul(&value);
n += 1;
}
result = result.add(&coef.mul(&xn));
}
result
}
/// Constructs polynomial `ax^n`.
pub fn term(a: C, n: u64) -> Self {
Self {
coefficients: HashMap::from([(n, a)]),
}
}
}
impl<C: Semiring> From<C> for Polynomial<C> {
fn from(value: C) -> Self {
Self {
coefficients: HashMap::from([(0, value)]),
}
}
}
/// Given a string `s`, parse it into a `Polynomial<C>`.
/// You may assume that `s` follows the criteria below.
/// Therefore, you do not have to return `Err`.
///
/// Assumptions:
/// - Each term is separated by ` + `.
/// - Each term is one of the following form: `a`, `x`, `ax`, `x^n`, and `ax^n`, where `a` is a
/// `usize` number and `n` is a `u64` number. This `a` should then be converted to a `C` type.
/// - In `a`, it is guaranteed that `a >= 1`.
/// - In `ax` and `ax^n`, it is guaranteed that `a >= 2`.
/// - In `x^n` and `ax^n`, it is guaranteed that `n >= 2`.
/// - All terms have unique degrees.
///
/// Consult `assignment06/grade.rs` for example valid strings.
///
/// Hint: `.split`, `.parse`, and `Polynomial::term`
impl<C: Semiring> std::str::FromStr for Polynomial<C> {
type Err = (); // Ignore this for now...
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut coefficients: HashMap<u64, C> = HashMap::new();
for term in s.split(" + ") {
let has_x: bool = term.contains('x');
let has_power = term.contains('^');
let deg: u64 = if has_power {
term.split("^").nth(1).unwrap().parse().unwrap()
} else if has_x {
1
} else {
0
};
let coef: usize = if has_x && term.find("x").unwrap() == 0 {
1
} else if has_x {
term.split("x").nth(0).unwrap().parse().unwrap()
} else {
term.parse().unwrap()
};
let _unused = coefficients.insert(deg, from_usize(coef));
}
Ok(Self { coefficients })
}
}